Collaborative Research Center 360
Constrained Quantum Matter
Less is more!
We use carefully chosen constraints to design and
manipulate quantum states in solids, seeking to create new quantum
materials and explore conceptual challenges from quantum information
theory to non-equilibrium physics.
On 22. - 25. September 2025 there will be the first TRR 360 International Conference. Find out more about the details here!



2025 James C. McGroddy Prize awarded to Hidenori Takagi
We are very proud to announce that one member of the TRR 360, Hidenori Tagaki from the MPI for solid-state research in Stuttgart, will be awarded with the 2025 James C. McGroody Prize for New Materials. He is honoured “for seminal theoretical and experimental research, materials design and discoveries that pioneered the exploration of novel forms of topological quantum matter in spin-orbit assisted Mott insulators realized in transition metal oxides”. More information can be found here. The prize will be presented in March 2025.
Next events
Recent Articles
Kern, L. -M.; Kuchkin, V. M.; Deinhart, V.; Klose, C.; Sidiropoulos, T.; Auer, M.; Gaebel, S.; Gerlinger, K.; Battistelli, R.; Wittrock, S.; Karaman, T.; Schneider, M.; Günther, C. M.; Engel, D.; Will, I.; Wintz, S.; Weigand, M.; Büttner, F.; Höflich, K.; Eisebitt, S.; Pfau, B. Controlled Formation of Skyrmion Bags Journal Article Adv. Mater. 2501250 (2025), (contributed). @article{kern_controlled_2025, Abstract Topologically non-trivial magnetic solitons are complex spin textures with a distinct single-particle nature. Although magnetic skyrmions, especially those with unity topological charge, have attracted substantial interest due to their potential applications, more complex topological textures remain largely theoretical. In this work, the stabilization of isolated higher-order skyrmion bags beyond the prototypical π-skyrmion in ferromagnetic thin films is experimentally demonstrate, which has posed considerable challenges to date. Specifically, controlled generation of skyrmionium (2π-skyrmion), target skyrmion (3π-skyrmion), and skyrmion bags (with variable topological charge) are achieved through the introduction of artificially engineered anisotropy defects via local ion irradiation. They act as preferential sites for the field- or laser-induced nucleation of skyrmion bags. Remarkably, ultrafast laser pulses achieve a substantially higher conversion rate transforming skyrmions into higher-order skyrmion bags compared to their formation driven by magnetic fields. High-resolution x-ray imaging enables direct observation of the resulting skyrmion bags. Complementary micromagnetic simulations reveal the pivotal role of defect geometry–particularly diameter–in stabilizing closed-loop domain textures. The findings not only broaden the experimental horizon for skyrmion research, but also suggest strategies for exploiting complex topological spin textures within a unified material platform for practical applications. |
Metternich, D.; Litzius, K.; Wintz, S.; Gerlinger, K.; Petz, S.; Engel, D.; Sidiropoulos, T.; Battistelli, R.; Steinbach, F.; Weigand, M.; Wittrock, S.; Schmising, C. Korff; Büttner, F. Defects in magnetic domain walls after single-shot all-optical switching Journal Article Struct. Dyn. 12, 024504 (2025). @article{metternich_defects_2025, Helicity-independent all-optical switching (HI-AOS) is the fastest known way to switch the magnetic order parameter. While the switching process of extended areas is well understood, the formation of domain walls enclosing switched areas remains less explored. Here, we study domain walls around all-optically nucleated magnetic domains using x-ray vector spin imaging and observe a high density of vertical Bloch line defects. Surprisingly, the defect density appears to be independent of optical pulse parameters, significantly varies between materials, and is only slightly higher than in domain walls generated by field cycling. A possible explanation is given by time-resolved Kerr microscopy, which reveals that magnetic domains considerably expand after the initial AOS process. During this expansion, and likewise during field cycling, domain walls propagate at speeds above the Walker breakdown. Micromagnetic simulations suggest that at such speeds, domain walls accumulate defects when moving over magnetic pinning sites, explaining similar defect densities after two very different switching processes. The slightly larger defect density after AOS compared to field-induced switching indicates that some defects are created already when the domain wall comes into existence. Our work shows that engineered low-pinning materials are a key ingredient to uncover the intrinsic dynamics of domain wall formation during ultrafast all-optical switching. |
Hua, N.; Breitner, F.; Jesche, A.; Huang, S. -W.; Rüegg, C.; Gegenwart, P. Structural and magnetic properties of β-Li2IrO3 after grazing-angle focused ion beam thinning Journal Article Acta Crystallogr. B 81, 202 (2025). @article{hua_structural_2025, Manipulating the size and orientation of quantum materials is often used to tune emergent phenomena, but precise control of these parameters is also necessary from an experimental point of view. Various synthesis techniques already exist, such as epitaxial thin film growth and chemical etching, that are capable of producing specific sample dimensions with high precision. However, certain materials exist as single crystals that are often difficult to manipulate, thereby limiting their studies to a certain subset of experimental techniques. One particular class of these materials includes lithium and sodium iridates, which are promising candidates for hosting a Kitaev quantum spin liquid state. Here a controlled method of using a focused ion beam at grazing incidence to reduce the size of a β-Li_2IrO_3 single crystal to a thickness of 1–2𝜇m is presented. Subsequent X-ray diffraction measurements show the lattice remains intact, albeit with a larger mosaic spread. The integrity of the magnetic order is also preserved as the temperature dependent magnetic diffraction peak follows the same trend as its bulk counterpart with a transition temperature at textitT = 37.5K. Our study demonstrates a technique that opens up the possibility of nonequilibrium experiments where submicron thin samples are often essential. |
Halloran, T.; Wang, Y.; Plumb, K. W.; Stone, M. B.; Winn, B.; Graves-Brook, M. K.; Rodriguez-Rivera, J. A.; Qui, Y.; Chauhan, P.; Knolle, J.; Moessner, R.; Armitage, N. P.; Takayama, T.; Takagi, H.; Broholm, C. Continuum of magnetic excitations in the Kitaev honeycomb iridate D3LiIr2O6 Journal Article npj Quantum Mater. 10, 35 (2025). @article{halloran_continuum_2025, Inelastic neutron scattering (INS) measurements of powder D3LiIr2O6 reveal low energy magnetic excitations with a scattering cross-section that is broad in ∣Q∣ and energy transfer. The magnetic nature of the excitation spectrum is demonstrated by longitudinally polarized neutron scattering. The total magnetic moment of 1.8(4)μB/Ir inferred from the observed magnetic scattering cross-section is consistent with the effective moment inferred from magnetic susceptibility data and expectations for the Jeff = 1/2 single ion state. The rise in the dynamic correlation function S(Q, ω) for ℏω < 5 meV can be described by a simple model assuming nearest-neighbor anisotropic spin exchange, such as that found in the Kitaev model. Exchange disorder associated with the D site likely plays an important role in stabilizing the low T quantum fluctuating state. |
Impressions from past events




































The research programme
We seek to design and utilize new quantum states by taking advantage of the recently developed capability to tailor electron systems in complex materials through a variety of complementary constraints, focusing on spin-momentum locking, gauge structures of interacting spin systems, and kinetic constraints.
News
Here you can find all the important news around the project ConQuMat: recent publication, internal events for project members and opening for various positions.
Outreach - Öffentlichkeitsarbeit
Dive with us into the fascinating world of quantum matter! (science communication offers in German)
Es gibt viele Angebote, um die Forschung aus dem Projekt ConQuMat der Öffentlichkeit zugänglich zu machen. Egal ob durch einen Blog, Spiele oder Erlebnisveranstaltungen – tauchen Sie mit uns in die faszinierende Welt der Quantenmaterie ein!