Transregio 360
Quantenmaterie mit eingeschränkten Freiheitsgraden
Weniger ist mehr!
Wir nutzen sorgfältig ausgewählte Einschränkungen um Quantenzustände in Festkörpern zu erschaffen und zu manipulieren. Das Ziel ist es damit neue Quantenmaterialien herzustellen und mehr über Quantenmaterialien zu lernen.
Willst du mehr wissen?
Dann besuche doch unseren Blog und erfahre mehr über das Thema, besuche unsere Veranstaltungen oder entdecke unsere spielerischen Angebote rund um die Quantenwelt! All dies findet ihr auf der Seite unseres Outreach-Projektes.
Neuste Publikationen
Chmeruk, A.; Jones, D.; Balducci, R.; Ebad-Allah, J.; Beiuşeanu, F.; Schilberth, F.; Kassem, M. A.; Schade, U.; Veber, A.; Puskar, L.; Tabata, Y.; Waki, T.; Nakamura, H.; Kuntscher, C. A.; Östlin, A.; Chioncel, L. Suppression of magnetism in Co3Sn2S2 under external pressure Unpublished (2025), arXiv:2511.08141. @unpublished{chmeruk_suppression_2025,The ability to control the magnetic state provides a powerful means to tune the underlying band topology, enabling transitions between distinct electronic phases and the emergence of novel quantum phenomena. In this work, we address the evolution of ferromagnetic state upon applying external pressures up to 10.8~GPa using a combined experimental and theoretical study. The standard emph{ab initio} Density Functional Theory computation including ionic relaxations grossly overestimates the unit cell magnetization as a function of pressure. In our theoretical analysis we identify two possible mechanisms to remedy this shortcoming. Matching the experimental observations is achieved by a symmetry-preserving adjustment of the sulfur atoms position within the unit cell. Alternatively, we explore various combinations of the exchange and correlation parts of the effective potential which reproduce the experimental magnetization, the structural parameters and the measured optical conductivity spectra. Thus, the pressure-dependent behavior of magnetization demands a careful theoretical treatment and analysis of theoretical and experimental data. |
Wu, Y.; Dai, Z.; Anand, S.; Lin, S. -H.; Yang, Q.; Wang, L.; Pollmann, F.; Zaletel, M. P. Alternating and Gaussian Fermionic Isometric Tensor Network States Journal Article PRX Quantum 6, 040324 (2025). @article{wu_alternating_2025,Isometric tensor networks in two dimensions enable efficient and accurate study of quantum many-body states, yet the effect of the isometric restriction on the represented quantum states is not fully understood. We address this question in two main contributions. First, we introduce an improved variant of isometric tensor network states (isoTNS) in two dimensions, where the isometric arrows on the columns of the network alternate between pointing upward and downward; hence the name alternating isometric tensor network states. Second, we introduce a numerical tool—the isometric Gaussian fermionic TNS (isoGfTNS)—that incorporates isometric constraints into the framework of Gaussian fermionic tensor network states. We demonstrate in numerous ways that alternating isoTNSs represent many-body ground states of two-dimensional quantum systems significantly better than the original isoTNSs. First, we show that the entanglement in an isoTNS is mediated along the isometric arrows and that alternating isoTNSs mediate entanglement more efficiently than conventional isoTNSs. Second, alternating isoTNSs correspond to a deeper, and thus more representative, sequential-circuit construction of depth 𝒪(𝐿𝑥 ⋅𝐿𝑦) compared to the original isoTNSs of depth 𝒪(𝐿𝑥 +𝐿𝑦). Third, using the Gaussian framework and gradient-based energy minimization, we provide numerical evidence of better bond-dimension scaling and variational energy of alternating isoGfTNSs for ground states of various free-fermionic models, including the Fermi surface, the band insulator, and the 𝑝𝑥 +𝑖𝑝𝑦 mean-field superconductor. Finally, benchmarking on the transverse-field Ising model, we demonstrate that an alternating isoTNS provides substantially improved performance and stability relative to the original isoTNS for the ground-state search algorithm in interacting systems. |
Yamada, R.; Birch, M. T.; Baral, P. R.; Okumura, S.; Nakano, R.; Gao, S.; Ezawa, M.; Nomoto, T.; Masell, J.; Ishihara, Y.; Kolincio, K. K.; Belopolski, I.; Sagayama, H.; Nakao, H.; Ohishi, K.; Ohhara, T.; Kiyanagi, R.; Nakajima, T.; Tokura, Y.; Arima, T.; Motome, Y.; Hirschmann, M. M.; Hirschberger, M. A metallic p-wave magnet with commensurate spin helix Journal Article Nature 646, 837 (2025). @article{yamada_metallic_2025,Antiferromagnetic states with a spin-split electronic structure give rise to spintronic, magnonic and electronic phenomena despite (near-)zero net magnetization [1–7]. The simplest odd-parity spin splitting—p wave—was originally proposed to emerge from a collective instability in interacting electron systems [8–12]. Recent theory has identified a distinct route to realize p-wave spin-split electronic bands without strong correlations [13,14], termed p-wave magnetism. Here we demonstrate an experimental realization of a metallic p-wave magnet. The odd-parity spin splitting of delocalized conduction electrons arises from their coupling to an antiferromagnetic texture of localized magnetic moments: a coplanar spin helix whose magnetic period is an even multiple of the chemical unit cell, as revealed by X-ray scattering experiments. This texture breaks space-inversion symmetry but approximately preserves time-reversal symmetry up to a half-unit-cell translation—thereby fulfilling the symmetry conditions for p-wave magnetism. Consistent with theoretical predictions, our p-wave magnet shows a characteristic anisotropy in the electronic conductivity [13–15]. Relativistic spin–orbit coupling and a tiny spontaneous net magnetization further break time-reversal symmetry, resulting in a giant anomalous Hall effect (Hall conductivity >600 S cm−1, Hall angle >3%), for an antiferromagnet. Our model calculations show that the spin-nodal planes found in the electronic structure of p-wave magnets are readily gapped by a small perturbation to induce the anomalous Hall effect. We establish metallic p-wave magnets as an ideal platform to explore the functionality of spin-split electronic states in magnets, superconductors, and in spintronic devices. |
Eindrücke von vergangenen Veranstaltungen






















Unsere Mission
Willst du genauer verstehen, was das Ziel des TRR360 ist? Hier wird die Forschung anschaulich für Nichtphysiker erklärt.
das TRR360-Team
Lerne die Gesichter hinter dem TRR360 kennen und finde heraus welche Einrichtungen sich an diesem großen Forschungsprojekt beteiligen! (nur auf Englisch)
Outreach - Öffentlichkeitsarbeit
Es gibt viele Angebote, um die Forschung aus dem Projekt ConQuMat der Öffentlichkeit zugänglich zu machen. Egal ob durch einen Blog, Spiele oder Erlebnisveranstaltungen – tauchen Sie mit uns in die faszinierende Welt der Quantenmaterie ein!